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The unsteady boundary layer of a rotating, stratified, viscous, and diffusive flow 
along an insulating slope is investigated using theory, numerical simulation, and 
laboratory experiment. Previous work in this field has focused either on steady flow, 
or flow over a conducting boundary, both of which yield Ekman-type solutions. After 
the onset of a circulation directed along constant-depth contours, Ekman-type flux 
up or down the slope is opposed by buoyancy forces. In the unsteady, insulating case, 
it is found that the cross-slope transport decreases in time as ( t / T ) - i  where 

1 l/a+S 
= S ’ f c o s a ( ~ ) ~  

may be called the ‘shut-down’ time. Here S = (Nsina/fcosu)2, f is the Coriolis 
frequency, u is the slope angle, N is the buoyancy frequency, and a is the Prandtl 
number. Subsequently the along-slope flow, 8, approximately obeys a simple 
diffusion equation 

where t is time, v is the kinematic viscosity, and ẑ  is the coordinate normal to the 
slope. By this process the boundary layer diffuses into the interior, unlike an Ekman 
layer, but at a rate that may be much slower than would occur with simple non- 
rotating momentum diffusion. The along-slope flow, 6, is nevertheless close to 
thermal wind balance, and the much-reduced cross-slope transport is balanced by 
stress on the boundary. For a slope of infinite extent the steady asymptotic state is 
the diffusively driven ‘ boundary-mixing ’ circulation of Thorpe (1987). By inhibiting 
the cross-slope transport, buoyancy virtually eliminated the boundary stress and 
hence the ‘fast’ spin-up of classical theory in laboratory experiments with a bowl- 
shaped container of stratified, rotating fluid. 

1. Introduction 
1.1. Ekman layer on a slope with stratijcation 

The Ekman layer has a cross-isobar transport (the ‘Ekman transport ’), which, if 
horizontally divergent, drives a vertical velocity out of the boundary layer. This 
vertical velocity stretches or shrinks vortex lines in the interior, and the boundary 
layer may thereby affect large-scale atmospheric or oceanic flows, a process called 
‘ spin-up ’. The review article by Benton & Clark (1974) gives the early history of spin- 
up in many different contexts. If the fluid is stratified and the boundary is sloping, 
then buoyancy forces may impede the Ekman transport, lessening the vertical 
velocity, and significantly decreasing the effect of the boundary on the interior. In  
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this paper we derive a theory of the boundary layer for rotating, stratified flow along 
a slope and then compare this theory with numerical and laboratory experiments. 

Several authors have considered the flow of a rotating, stratified, viscous fluid over 
topography. By ‘topography ’ we mean any boundary whose normal is not parallel 
to gravity. Fluid over such terrain may have isopycnals intersecting the slope, and 
hence there will be gradients of density on the slope. Above a flat boundary, scaling 
arguments (Pedlosky 1987, pp. 360-362) suggest that, if buoyancy and Coriolis 
forces are comparable in a depth H (the vertical scale of the interior flow), then 
buoyancy may be negligible within a boundary layer much thinner than H .  This 
argument is often used (e.g. Pedlosky 1987, equation 6.6.9) to  justify the use of 
simple Ekman theory for oceans or atmospheres with sloping lower boundaries. With 
a sloping boundary, however, persistent advection of buoyancy contrasts may 
eventually introduce significant new effects. The key effect is the excursion of fluid 
particles within the boundary layer, which tends to  be far larger than that in the 
interior. During spin-up, for example, the classic solution without stratification 
shows excursion of near-boundary fluid through a distance L(eH/6) ,  which may 
readily exceed L ,  the lateral scale of the flow. Here 6 is the thickness of the Ekman 
layer, (v/52)$, where v is the kinematic viscosity, and 52 is the rotation rate of the fluid. 
The Rossby number, E ,  is U/QL, where U is the scale of the horizontal velocity. 
Although E is typically small for large-scale geophysical flows, H / 6  is typically large. 

Holton (1967) first solved for a ‘buoyant ’ Ekman layer when studying atmospheric 
flow over the Great Plains of the United States, a region of gradually sloping terrain. 
The density in Holton’s model boundary layer has diurnal radiative forcing, with a 
specified temperature (and hence density) at the ground. An along-slope, geostrophic 
wind is specified in the interior. He finds that the boundary layer is a modified 
Ekman spiral, plus a thermally driven diurnal oscillation. The effect of the slope 
combined with the stratification is to create a buoyancy force which decreases the 
magnitude of the diurnal oscillation. Yet there is also a steady cross-slope transport 
associated with the mean along-slope wind. This steady transport is possible because, 
for example, as the Ekman transport drives cold, heavy air up-slope, this air is 
warmed by internal diabatic heating, forced by the temperature boundary condition. 

Hsueh (1969) also solved for a buoyant Ekman layer, again specifying the flow in 
the interior and the temperature at the boundary. His analysis is for shallow slopes 
(a < 1, where a is the slope angle from horizontal) and allows horizontal variation of 
the slope. His solution is similar to an Ekman layer, but of reduced thickness: 
6( 1 + a(d / j )2 ) - i ,  where a is the Prandtl number, v /K ,  and K is the density diffusivity. 
N is the buoyancy frequency, and f is the Coriolis frequency, 252. As in Holton’s 
solution a steady up-slope transport is allowed by the diffusion of heat to or from the 
boundary. 

If the sloping boundary is insulating instead of conducting, the buoyancy can no 
longer adjust as fluid moves up- or down-slope, except in the presence of diffusion to 
the interior. The cross-slope buoyancy flux must nevertheless enter into the force 
balance. Siegmann (1971), considering stratified spin-up in a spherical container with 
conducting walls, suggests that if the walls are insulating rather than conducting 
then there may be no order-one fast spin-up, since cross-slope boundary layer 
transport will be suppressed by the buoyancy. Our laboratory experiments ($5)  show 
this to be largely correct in the limit of strong stratification and steep walls, but even 
in this limit there were unexpected results. For example, we found that the boundary 
layer was no longer confined to the narrow Ekman layer thickness, but instead 
diffused far into the interior. 
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Weatherly & Martin (1978) developed a numerical model of the turbulent 
boundary layer along a sloping ocean bottom, comparing it with data from the 
Western Atlantic on the continental slope. They account for buoyancy forces in their 
calculation, and one may observe in their model results (see their figure 9) a gradual 
slowing of the up-slope Ekman transport, although the calculation is not carried very 
far in time. 

Above an insulating slope, such as the ocean floor, the boundary conditions for 
temperature and salinity require that isopycnal surfaces lie normal to the boundary. 
This is accomplished by diffusion, but the resulting tilted isopycnals are not in 
balance with buoyancy forces. For a non-rotating fluid the result, Phillips (1970), is 
a steady up-slope boundary layer current wherein up-slope advection of the density 
gradient exactly balances the diffusive down-slope density flux. Oceanographic 
attention has been focused recently on this class of ‘self-propelled ’ boundary-layer 
flows (Phillips, Shyu & Salmun 1986; Thorpe 1987, and Garrett 1990) because of the 
possibility that enhanced mixing occurs a t  ocean boundaries. Diffusively driven 
flows on sloping boundaries may both mix stratified fluid and exchange fluid with the 
interior. 

Thorpe (1987) discussed the boundary layer of a rotating, stratified, viscous, 
diffusive flow along an insulating slope of constant angle and infinite extent. His 
solution plays an important role in the time-dependent model developed below in 
52. It is steady, with a vertical structure much like Hsueh’s (1969) solution. Yet on 
application of the insulating boundary condition Thorpe finds that the interior flow 
far from the boundary is specified as a part of the solution. Thus, while steady 
solutions exist for any interior flow if density is specified at the boundary (as we see 
in Holton 1967 and Hsueh 1969), there is only one interior flow that has a steady 
boundary layer in the insulating case. Thorpe, like Holton, also presents an 
oscillatory solution, but i t  must oscillate about the steady solution, and the time- 
averaged properties are unchanged. For uniform v and K ,  the steady flow in Thorpe’s 
solution is one that leads to an up-slope transport. This up-slope flow is allowed 
because it is balanced by a diffusive down-slope density flux, driven by the density 
boundary condition, as in the non-rotating solution of Phillips (1970). The 
boundary layer is, like the Ekman layer, confined to a thin region, and is unable to 
alter the interior except through meridional circulation. 

The diversity of steady solutions in the literature, corresponding to different 
boundary conditions and values of r, suggests the need for a theory with more than 
oscillatory time-dependence. What happens, for example, when an interior along- 
slope flow is ‘switched-on ’ to a value different than Thorpe’s ? At one extreme (early 
time) the problem yields Ekman theory, in which the interior flow controls the 
boundary layer, which then feeds back on the interior by Ekman pumping. At the 
other extreme (late time) lies Thorpe’s solution, where a steady boundary layer 
requires a particular value of the interior velocity, although how this state comes 
about is unclear. In more general applications, the presence of other insulating 
boundaries will cause the fluid eventually to be well-mixed and at rest, in the absence 
of sources or sinks of momentum or buoyancy. This suggests that it is crucial to know 
the rate of establishment of the quasi-steady Ekman- and boundary-mixing 
solutions, for they must compete with the external forcing affects that maintain the 
circulation and stratification of the fluid. We can anticipate a strong dependence on 
IT, and in particular a weakness of the boundary-mixing circulations for the large 
values of r typical of laminar conditions in laboratory experiments. 
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1.2. Classic spin-up 
While the boundary layer is accessible to theory and numerical solution, its small size 
makes visualization difficult in laboratory experiments. But we may readily observe 
the large-scale effects of boundary-layer transport in spin-up experiments. In  the 
classic spin-up problem (Greenspan & Howard 1963) a right circular cylinder filled 
with homogenous, incompressible, viscous fluid is rotating initially a t  angular 
velocity SZ. The cylinder is then impulsively accelerated to  a slightly greater angular 
velocity SZ+AQ. I n  a time O(l2-l) an Ekman layer forms on the bottom boundary 
(we take the top to be a free surface). The ensuing Ekman transport drives a 
meridional circulation involving radial and vertical velocities in the interior. The 
interior fluid never directly feels the effects of viscosity, and approaches the new 
rotation rate in a timescale E-iSZ-’, where E is the Ekman number, ( 6 / H ) 2 ,  and H is 
the height of the cylinder. For small Ekman number this spin-up timescale is much 
faster than that for penetration of viscous effects into the interior, E-lSZ-’. For 
typical laboratory parameters (v = 0.01 em2 s-l, 52 = 1 s-l, H = 10 em) the ‘fast’ 
spin-up occurs in 100 s, whereas the viscous timescale is nearly three hours, and this 
contrast is magnified in flows of geophysical scale. 

It is essential to incorporate stratification if spin-up is to apply to atmosphere and 
ocean flows. Holton (1965) divides the equations of motion into interior and 
boundary-layer parts, scaling vertical derivatives in the boundary layer as E-4 
greater than those in the interior. He takes the timescale of the problem to be the 
‘fast’ spin-up time, E-k-’ ,  based on the results of Greenspan & Howard (1963), and 
expands all dependent variables in powers of Ei, the obvious small parameter of the 
problem. 

The primary result of Holton’s analysis is that the ‘fast ’ spin-up process no longer 
extends through the entire depth of the fluid, but is confined by the buoyancy within a 
‘Prandtl scale’ H ,  = f L / N  above the bottom boundary (the subscript P is for 
Prandtl). L is the horizontal lengthscale of the forcing, typically the tank radius. 
Holton also finds that stratified spin-up is faster than in the homogenous case, owing 
to the reduced height of penetration, H,. At the end of the ‘fast ’ spin-up process the 
fluid in the interior has considerable vertical shear, which is removed by viscosity. 
Diffusive effects a t  O(Ei) and O(E) were considered by St-Maurice & Veronis (1975), 
who find both a gradual migration to a diffusively controlled interior, and 
modification of the ‘fast’ spin-up by viscosity. 

Spin-up theory has provided justification for a simple parameterization of bottom 
boundary friction of geophysical flows, essentially as a surface drag that is linear in 
the geostrophic velocity. Numerical and analytical models of large-scale flow thus 
often assume that relative vorticity decays exponentially with timescale E-k-’,  
rather than resolve the boundary layer itself. The exact timescale is, in practice, 
difficult to determine because 6 and H ,  are hard to  measure, but their variation is not 
so great as to make the theory unworkable. 

I n  $2 we develop the boundary-layer equations, and derive approximate time- 
dependent solutions for an insulating boundary with constant v and K ,  and an 
impulsively started interior flow. We compare these to numerical solutions to the full 
one-dimensional problem in $3. The balance of the paper is a description and 
discussion of laboratory experiments. We carried out stratified spin-up experiments 
in a container with a sloping bottom boundary, using stratification large enough to 
inhibit Ekman transport well before ‘fast ’ spin-up could influence the interior flow. 
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2. The time-dependent Ekman layer with stratification 
2.1. Development of the equations 

The equations of motion and mass conservation for a Boussinesq, incompressible 
fluid, in a reference frame rotating at angular velocity Qk may be written as 

( 2 . 1 ~ )  

(2.1 b)  

V - u  = 0. (2.lc) 

Here u is the velocity vector (u, v, w) in Cartesian coordinates (x, y, z ) ,  V is the 
gradient (a/ax, slay, a/az), dldt is the material derivative a p t  + u . V ,  k is the vertical 
unit vector ( O , O ,  l), and g is gravity. 

The density p has been separated into three parts such that 

p = P0+P(4+P’(X9Y,Z,t). (2.2) 

We wish to consider a system with small density variations from the mean, p,,, hence 
p’ -4 po and p -4 po. We allow p’ to be as large as p ,  so that the time-dependent density 
variation could, for example, overwhelm the static stability of the stratification. We 
define the buoyancy frequency by 

p=--- 9 aP 
Po 8.2 * 

We take N to be constant in our analysis. 
The pressure p is separated into two parts: 

The z-dependence of p is taken to be hydrostatic, hence 

_- a? - g ( p 0 + P ) .  
aZ 

The z-dependence of p is used to introduce an along-slope geostrophic velocity, V ,  in 
the interior, given by 

V is constant in both time and space (after time t = 0) ,  and is specified as an initial 
condition of the problem. 

We want to describe the development of the boundary layer for flow along a slope. 
Following Phillips (1970) we simplify the problem by considering flow along a 
boundary of constant slope, tan a. While this one-dimensional geometry also 
eliminates boundary-layer divergence, parametric variations of interior velocity or 
slope can later incorporate this ‘pumping’, which is crucial to classic spin-up. We 
then rotate the equations into the slope frame of reference, as defined in figure 5 (b ) .  
All variables in the new frame of reference will be denoted by A. The rotated velocity 
vector components are the up-slope velocity 12, the along-slope velocity 6, and the 
velocity normal to the slope, 6, in the corresponding Cartesian coordinate system, 2, 
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ij, i. We assume 6, I?, 4, p', and p' have no P or i j  variation, which is reasonable if the 
initial condition has no such variation. This assumption makes the problem 
inherently linear, and disallows velocities normal to the boundary, i.e. t2 = 0. Hence 
the solutions cannot represent the overturning of unstable stratifications. In  
geophysical boundary flows such overturning is often parameterized by increased 
eddy viscosity and diffusivity in the unstable region. For the purposes of our analysis 
we shall assume that v and K are constant, and simply point out where the solutions 
are not statically stable. 

Writing the equations in the rotated frame of reference, and adding cosa times the 
P-momentum equation to sin a times the i-momentum equation to  eliminate the 
pressure, we find 

a4 a24 
at az"2 ' 
---fcosa('U-V) = -Bsina +v- 

-++fcosazi a.; = v- a2.; 

a i 2  at 

a2B 
-- -N2sinazi+K -. i3B 
at az"2 

( 2 . 7 ~ )  

(2 .7b )  

( 2 . 7 ~ )  

We have written B for the buoyancy, gp'/po, to simplify the notation. The boundary 
conditions are 

4 = 6 = 0  at  i = O ,  ( 2 . 8 ~ )  

= N2cosa at z" = 0, (2 .8b )  

4 and B-tO as i + m ,  ( 2 . 8 ~ )  

and v"+V as ;-too. ( 2 . 8 d )  

Thus there is a no-slip velocity boundary condition, and the slope is insulating. When 
K = 0, (2 .8b )  should be replaced by 

B=O at i = O .  (2.8e) 

When a = 0, (2 .7 )  gives rise to a standard Ekman layer. When N = 0 the solution 

aB - 
ai 

is a modified Ekman layer with thickness 

8, = (2v/jcosa)t. (2 .9 )  

The subscript s indicates that  this is in the slope frame of reference. 
Buoyancy becomes important to the momentum balance through the term 

Bsin a in ( 2 . 7 a ) ,  which grows in magnitude initially by advection of the stratification, 
and by diffusion of the boundary condition. For the non-diffusive ( K  = 0) case we may 
simply estimate when buoyancy will first become important. Assuming that 
buoyancy is initially unimportant the solution will be approximately the modified 
Ekman layer of thickness 8, described above. In the boundary layer we may then 
make the scale estimates: 

(G-V) and 4 ~ - V .  (2.10) 

Integrating ( 2 . 7 ~ )  in time and using the scale estimate, the buoyancy within the 
boundary layer is approximately 

B - -  VW sin a To,  (2.11) 
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at a time T ~ .  Substituting this expression into the &momentum equation ( 2 . 7 ~ )  we 
find that the buoyancy term becomes as large as the Coriolis term when 

(2.12) 

The above derivation was based on the assumption that Ekman theory was workable 
for some time before buoyancy became important, which implies ( N / f )  t ana  4 1. If 
this were not the case then buoyancy would presumably become important while the 
Ekman layer was forming. Walin (1969) suggests that Ekman-layer theory remains 
valid if (N/  f) t ana  is small. Our scale analysis (and full theory to be presented 
below) in fact predicts that buoyancy forces eventually become substantial unless 
( N / f )  tan a is actually zero. 

2.2. Steady solutions 
Thorpe’s (1987) steady solution to (2.7) subject to boundary conditions (2.8) is 

A 2 ~ c o t a  
u=- exp ( - i /&) sin (d/6,), 

ST 
(2 .13~)  

v” = VT( 1 - exp ( - z”/6,) cos (2/6,)), (2.13 b )  

where (2 .14~)  

and vT = -2(KCOt01)8T/6i. (2.14b) 

This solution has roughly the form of an Ekman layer of thickness 6,. The subscript 
T is for Thorpe. The along-slope velocity in the interior is fixed by the density 
boundary condition to a constant value, V,. The cross-slope transport is completely 
determined by the diffusivity and the slope angle, as seen by the integral 

This result, which comes directly from integration of the steady form of (2.7c), with 
boundary condition (2.8 b ) ,  expresses the fact that for the steady problem there must 
be a global balance of advective and diffusive buoyancy fluxes. Thorpe also extends 
his solution to the case where the viscosity and diffusivity vary away from the slope, 
to represent flows with a mixed layer at the boundary. Still, it remains difficult to 
apply these solutions to geophysical situations where the along-slope velocity is 
arbitrary. Garrett (1990) has addressed this problem by suggesting that the thickness 
and diffusivity of the mixed layer may adjust to conform to the interior flow. He 
finds that it may be possible to have such a solution for arbitrary interior velocity 
V of positive sign. 

Even if the diffusivity and viscosity are variable, steady solutions still strongly 
limit the cross-slope transport. Thorpe shows that the integrated transport in this 
case (still holding N constant) is always given by K, cot a, where K, is the value of 
K as x” +oo . This would have drastic consequences for geophysical flows, through the 
fast spin-up process, if the steady solutions were always in force. Taking this as a 
caution about the applicability of steady solutions we shall explore the time- 
dependent case analytically below. 

21-2 
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2.3. Approximate unsteady solutions 
Consider a situation where, initially, 6 = B = 0, and 6 = V everywhere except a t  the 
boundary. In the absence of stratification, an Ekman layer of thickness 8, will 
develop in a time O(0-l). With stratification, buoyancy will become important in a 
time r,,, (2.12). 

Let us assume for the moment that the buoyancy has become sufficiently 
important that  the along-slope velocity 6 has come approximately into ‘thermal 
wind’ balance with the density field. This would be expressed by an approximate 
version of the &momentum equation (note that (2.16) is actually a &integral of the 
thermal wind equation) : 

(2.16) 

where U is the scale of the &velocity, 

R, = (7, f cosa)-l, (2.17) 

a temporal Rossby number, and 

E, = (8s/Du)2, (2.18) 

an Ekman number. Here 7, is the timescale of the temporal variations of 6 ,  and Du 
is the thickness of the boundary layer for d. Below we shall be able to make more 
meaningful estimates of when and where these are small, and hence assess the 
validity of the thermal wind approximation in (2.16). 

Assuming that R, and E, are negligibly small, we take a/a t  and az/az”2 of (2.16) and 
substitute the results into the buoyancy equation (2.7 c )  to find 

f cos a a8 f cos a a26 
-- = N2sina&+K-- 
sina at sina a i 2 ’  (2.19) 

Solving this for Zi and substituting into the $-momentum equation (2.7b) the result 
may be written as 

where s = pJ, 
(2.20) 

(2.21) 

a Burger number. Thus the along-slope momentum dynamics have been reduced to 
a simple diffusion equation, despite the presence of both rotation and stratification. 
We shall refer to  (2.20) as the ‘slow diffusion’ equation, since for (T > 1 it predicts 
that the boundary layer will diffuse inward more slowly than the usual non-rotating 
boundary layer. The cross-slope flow leads to Coriolis forces which oppose the 
diffusion of along-slope momentum into the fluid. This is the effect that slows the 
diffusion and, in the case of an Ekman layer, brings it to  a halt. Yet the growing 
buoyancy force does not allow a steady Ekman balance, and so the boundary layer 
continues to  thicken. 

The slow-diffusion equation (2.20) is, in the limit S < 1 (and S - O(l/cr)), identical 
to a result derived previously by Gill (1981) for the evolution of the density field 
during the spin-down of a frontal region in the ocean interior (see also Garrett 1982). 
I n  their context slow diffusion is seen as an enhanced lateral diffusion. 
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Using the slow-diffusion equation (2.20) we may also estimate the cross-slope 
transport. Taking the $-integral of the buoyancy equation ( 2 . 7 ~ )  and applying the 
insulating boundary condition (2.8 b )  we form 

where 

Jomd$g = MN2sina-d2cosa,  

M = JOm did ,  

(2.22) 

(2.23) 

the cross-slope transport. Substituting 4 for B as before from the approximate 
thermal wind equation (2.16) (with R, and E,  equal to zero) and rearranging we find 

(2.24) 

Hence, if the flow does attain a steady state, the cross-slope transport is given by 
Thorpe’s result (2.15). Assuming that the slow-diffusion equation (2.20) adequately 
describes the time rate of change of 4 over most of the boundary layer, we may use 
it to obtain a scale estimate of the integral term in (2.24). By time t ,  B will have 
changed by an amount comparable with - V (assuming v” = 0 is the proper bottom 
boundary condition for (2.20)) in a region of thickness D, estimated from (2.20) as 

Hence we may form the scale estimate 

Using this result the transport equation may be rewritten as 

where 

-=c M - +-, K;;,a 

WOI 
1 l /u+S 

= S l f c o s a ( m - ) .  

(2.25) 

(2.26) 

(2.27) 

(2.28) 

We shall call 7 the ‘shut-down time ’ because it gives the timescale over which the 
cross-slope transport relaxes to the steady limit of Thorpe’s solution, K cot a. C is an 
O( 1) constant to be determined empirically. We have normalized the equation by 

= I -tV8,l, the magnitude of the steady Ekman transport when N = 0, since 
this will be the scale of the transport before buoyancy becomes important. 

For u = co and S < 1 the shut-down time, 7, is equal to 70, the timescale we 
determined in (2.12) for the onset of buoyancy effects in the boundary layer. Thus, 
at least for this simple case, the shut-down time is the time it takes for cross-slope 
advection to significantly alter the force balance within the boundary layer. 

When u = 1 the shut-down time varies as a-4, indicating that care should be taken 
when applying the theory to regions of non-constant slope. In particular, the 
horizontal lengthscale of variation in 7 should be much greater than the boundary- 
layer thickness. 

The analysis above hinged upon having very small values of R, and E,, the scales 
of the inertial and viscous terms in the P-momentum equation (2.16). While the 
boundary layer is initially forming, the timescale for changes in Zi will be (fcos a)-1, 
and R, will be O ( l ) ,  so clearly our results do not apply for this early time. After this 
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time the transport equation (2.27) suggests that  the timescale for changes in 
Q will be r ,  the shut-down time. Thus we expect R, 4 1 if (i) t % (f ~ o s a ) - ~ ,  and (ii) 
7 % (fcosa)-l. We shall see in $3  that  violation of this constraint on r does not 
significantly alter our results. The viscous term E, will also initially be at least 0(1) 
for t < (fcosa)-', since the boundary layer is thinner than 6, before that time. If 
the boundary layer for Q later thickens at  the same rate as slow diffusion (2.20) 
predicts for 6 then E,  will be small when D,  9 6,. In general we expect that E ,  4 1 
if (i) t % (fcosa)-', and (ii) D ,  $ 6,. We explore the validity of these expectations 
numerically below. 

3. Numerical solutions 
The set of coupled equations (2.7) describing the boundary layer was solved 

numerically, using forward-differencing in time, and central-differencing in space. 
Each run was initialized with 4 and 6 set equal to the steady N = 0 Ekman-layer 
solution on a slope, and with B = 0. This was done to minimize inertial oscillations 
in the solutions, similar to the gradual 'switching on'  of the boundary condition as 
seen, for example, in Weatherly & Martin (1978). We are thus necessarily 
concentrating only on boundary-layer behaviour for t > (fcos a)-1. Runs started 
with undisturbed initial conditions, Q = 0, 6 = V ,  and B = 0, had the same general 
behaviour as the solutions shown below, but had larger inertial oscillations, making 
the results more difficult to  see. There were approximately six grid points within the 
initial boundary-layer thickness, 8, (typically 0.14 cm), and 2400 time steps per 
period of revolution. Integrations covered a depth of at least 708,, and the boundary 
layer never significantly interacted with the upper boundary. The numerical scheme 
was checked against known behaviour (e.g. final steady velocity profiles, and 
timescale for decay of transients) of the unstratified case. 

3.1. Numerical integrations with little or no diffusivity 

Our laboratory experiments were salt stratified, so density diffusion was essentially 
negligible over the timescales of interest. To compare with these experiments we first 
present results of numerical integrations for the case K = 0. Throughout all the 
numerical results, f= 1 s-l, N = 2 s-l, and v = 0.01 em2 s-l, values typical of the 
laboratory experiments. 

Figure 1 (a)  shows B- and $-profiles versus z  ̂ a t  three different dimensionless times 
for V = - 1 cm s-l (corresponding to up-slope boundary-layer transport). Note that 
the V = f 1 cm s-l solutions are symmetrical in their velocity fields. The dashed lines 
are solutions to  the slow diffusion equation (2.20) a t  the same times (also initialized 
with the steady N = 0 Ekman velocity profile, and with a no-slip lower boundary 
condition). The 8 boundary layer thickened almost exactly as predicted by the slow 
diffusion equation, especially for large t / 7 .  The up-slope flow decreased in magnitude 
over time, and extended over roughly the same thickness as the 6 boundary layer. I n  
this instance, lacking density diffusion, it was the cross-slope velocity Q that had to 
advect the density field to  bring 6 into thermal wind balance. The accuracy of the 
slow diffusion equation in predicting the 6-velocity is an indication that the thermal 
wind assumption was valid over almost the whole depth of the boundary layer, 
particularly for larger t / 7  (inspection of the individual terms in ( 2 . 7 ~ )  during the 
integration also showed this to  be true). 

As Q advects the stratification up- or down-slope, there is the clear possibility that 
the resulting density field may not be statically stable. Figure 1 (b)  shows the density 
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FIQURE 1. Numerical solutions of (2.7) versus z^, with a = lo", f =  1 s-', N = 2 s-l, and 
v = 0.01 om2 s-l. Along-slope (6) and cross-slope (4) velocity profiles are shown in (a) for K = 0 
and V = - 1 cm s-l, a t  three dimensionless times: t / 7  = 1, 5, and 20 (7 = 7.3 9). The &profiles are 
compared with solutions (dashed lines) of the slow-diffusion equation (2.20) for the same times 
(at t / 7  = 20 the profiles are nearly identical). The density perturbation, p+p', at t / T  = 20 is shown 
in (b) with all parameters as in (a) except that I.' = +_ 1 cm s-l. The effect of a small density 
diffusivity, K = om2 s-l, on the profiles in (b) is shown in (c). 
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FIQURE 2. Normalized cross-slope transport versus t / 7  from three numerical solutions to (2.7). All 
parameters were as in figure 1 (a) except the slope angly, which was varied aa shown. Also shown 
(+) is a fit to the data given by M/IM,I = 0.8072 ( t / 7 ) - r .  

perturbation, p+$,  at  t / r  = 20, for two different interior along-slope velocities, 
V = + 1 cm s-l (causes a down-slope transport), and V = - 1 cm s-l (causes an up- 
slope transport). Figure 1 (c) shows the density perturbation for the same situations 
as in (b)  except with g = loa, representative of the actual molecular diffusivity of 
salt. The up-slope favourable case (V = - 1 cm s-l) was statically unstable only in a 
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PKWRE 3. Numerical solutions of (2.7) versus 5,  with a = 15', f = 1 s-l, N = 2 s-', and v = K = 
0.01 cm2 s-'; all at t / T  = 20 (7 = 12.6 9). In (a) and ( b )  V = - 1 cm s-', whereas in (c) and (d )  
V = 1 cm s-'. The $-profiles are compared with solutions (dashed lines) of the slow diffusion 
equation (2.20). Also shown (dotted lines, marked GT and GT) are the G- and &profiles for Thorpe's 
steady solution (2.13) with the same parameters (except V) .  

region very close to the boundary, and most of this unstable region was removed by 
the small diffusivity. In  all of the laboratory experiments presented below this was 
the sense of the interior velocity field, hence we ignore static instability in our 
analysis of the experiments. By contrast, the down-slope case (V  = + 1 cm s-l) was 
marginally unstable over much of the boundary layer, and the diffusivity did little 
to change this situation. Thus we expect that for IJ 9 1 our theory may need to be 
modified for interior velocities of positive sign, to account for possible static 
instability. Indeed, some laboratory experiments (not presented here) involving 
down-slope flow did show signs of instability in the boundary layer. 

Figure 2 shows the normalized cross-slope transport M / w , I ,  versus non- 
dimensional time t / ~ ,  for runs with three different slope angles, a = 5O, loo, and 1 5 O ,  
with corresponding shut-down times 31.8, 7.3 and 2.8 s. For these runs K = 0 and 
V = - 1 cm s-'. All other parameters were as before. The three curves collapsed to one 
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(except for the inertial oscillations), indicating that 7 was the correct parameter to 
non-dimensionalize the time. Also plotted (+ )  is a fit to the curves based on our 
transport prediction (2.27). The constant C we used was 0.8072, which came from 
fitting (2.27) to the numerical data at t /7  = 30. The fit looks good, even as early as 
t /7  = 2, indicating that, at least for K = 0, the transport resembles our prediction. 

When a = 15", 7 = 2.8 s, and so we would expect buoyancy effects to become 
important even before the Ekman layer is fully set up, possibly violating the scaling 
requirement 7 % (f cosa)-'. The only noticeable effect of this short 7 ,  however, was 
to excite somewhat larger inertial oscillations than in the cases with longer 7 .  

3.2. Numerical integrations with large diffusivity 
Subsequent numerical runs were carried out with K = v = 0.01 cm2 s-l (c = 1) to 
explore the effects of large density diffusion upon the boundary layer. Again, 
f = 1 s-l, and N = 2 s-l. For all runs the slope was 15". The only parameter that was 
varied was the sign of the initial interior velocity, V ,  being either plus or minus 
1 em s-l. 

Figure 3 (a ,  c )  shows 4- and $-velocity profiles versus 2 at t /7  = 20 (7 = 12.6 s) for 
(a )  V = - 1 em s-l, and (c) V = + 1 em s-'. Plotted as dashed lines are solutions to the 
slow diffusion equation a t  the same time. For comparison the Zi- and 6-velocities for 
Thorpe's steady solution with the same parameters (except V ,  which we are not free 
to specify) are plotted as dotted lines. In both cases the $-velocity profile had diffused 
away from the boundary approximately as much as the slow-diffusion solution 
predicted, but the magnitude of the $-velocity did not match the slow-diffusion 
solution, especially near the boundary. The 4-velocity had become positive in both 
cases by this time, and was concentrated near the boundary in a Thorpe-like profile. 
In these cases the assumption of thermal wind balance in 8 was probably flawed close 
to the boundary, owing to the density boundary condition. Specifically, the Ekman 
number, Es,  had probably become large there owing to the thinness of D,. 

The stratification parameter, p+p',  is shown a t  the same time, for these two cases 
in figure 3(b, d ) .  In both cases the stratification remained statically stable because 
of smoothing by the density diffusion. The perturbation to the mean stratification 
diffused upwards approximately as far as the &velocity profiles. In contrast to the 
K = 0 cases, here diffusion was the primary means of altering the density, except near 
the boundary where Zi remained large. 

Figure 4 ( a )  shows two families of $-velocity profiles (with parameters as in figure 
3) over a long period of time. The profiles suggest strongly that the time-dependent 
solution is moving toward Thorpe's steady solution. The $-velocity may achieve this 
goal fairly easily since it is concentrated near the boundary, but the $-velocity must 
change everywhere to attain the steady solution. This then appears to be the role of 
slow diffusion : the gradual transformation of the interior along-slope flow to that of 
Thorpe's steady solution, V,. I n  addition, the numerical solutions imply that V ,  is 
eventually the correct bottom boundary condition for the slow-diffusion equation, 
not 8 = 0 as we used. When K = 0, V, is also zero, which explains why the slow- 
diffusion solution was so accurate in that case (figure 1 ) .  

The normalized cross-slope transport for the two runs of figure 3 is plotted versus 
t /7  in figure 4(b). Also plotted (+ )  are fits to the runs. The fits are from 

which was derived in exactly the same manner as (2.27), but using the idea, 
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FIGURE 4. (a )  Numerical solutions for B at different times (times shown are non-dimensionalized by 
T ) ,  with parameters as in figure 3. Thorpe's steady solution for 6 is also shown (dashed line). Profiles 
to the left of the dashed line had V = - 1  cm s-l, and those t o  the right had V =  1 ems-'. 
Normalized cross-slope transport versus t / T  is plotted in ( b )  for two numerical solutions to 
(2.7). All parameters were as in figure 3. Also shown ( + )  are fits to the data based on (3.1). The 
limiting value of the (normalized) transport, Kcota/w,I, is also shown (dashed line). 

suggested by the numerical solutions, that V,  is eventually the proper bottom 
boundary condition for the slow diffusion equation. Hence instead of scaling a6/at as 
- V / t ,  we used a6/at - - (V-  V , ) / t .  This should somewhat overestimate the 
magnitude of %/at ,  since the assumed bottom boundary condition was actually only 
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gradually achieved, and this was the sense of the error in the plotted fits. Note that 
the analysis in $2 is unable to determine the rate at which this new bottom boundary 
condition is established. The fits used the same empirical constant, C = 0.8072, as 
was determined from the K = 0 case, and are still fairly good, especially a t  larger t / r .  

The theoretical ideas of $2 and the above numerical simulations support the 
conclusions that : (i) the v” boundary layer diffuses into the interior at a rate predicted 
by the slow-diffusion equation, eventually bringing v” in the interior to  V,, and (ii) the 
cross-slope transport changes from M,, to K cot a over time as ( t / ~ ) - i .  

4. Experimental set-up 
Laboratory experiments were carried out on a rotating table at the CSIRO Marine 

Laboratories in Tasmania, Australia. Rotation speed was controlled to within 
+0.001 rad s-l. The main tank (figure 5 )  used in these experiments was a Plexiglas 
section of a sphere. It varied from axial symmetry by no more than f0.25 cm. This 
tank will be referred to as ‘the bowl’. For comparison we also did experiments in 
a right-circular cylindrical tank, 45.5 cm in radius and filled to the same depth as 
the bowl. 

The tank was stratified with salt, hence density diffusion was almost non-existent 
over the course of an experiment. Typically the tank was stratified in five layers of 
increasingly salty water, from 0 to 140 parts per thousand, giving a nominal 10% 
density difference from top to bottom. The kinematic viscosity also varied by about 
10% owing to the salinity, and account was taken of this variation in the analysis, 
$6. The layers were allowed to  diffuse to a smooth profile overnight. Density was 
measured with a profiler that recorded conductivity, temperature and depth. The 
profiler had a spatial resolution of about 0.2 cm vertically. Typical profiles of density, 
p,  and buoyancy frequency, N ,  are shown in figure 6. N goes to zero near the top and 
bottom owing to  density diffusion. The profile shown is from the centre of the bowl. 
Profiles of N taken away from the centre do not go to zero near the lower floor except 
in a very small diffusive boundary layer. Previous experimenters have gone to great 
lengths (see for example Buzyna & Veronis 1971) to achieve a constant N-profile so 
that they could compare their experimental results with theory. For our experiments 
we shall make local comparisons of the flow with the theory developed in $2, so a 
local knowledge of N and a is sufficient. The centre of the bowl almost unavoidably 
had a small pool of low-Nwater a t  the bottom, and the dynamics there were generally 
very different from those at greater radius where Nand 01 conspired rapidly to  make 
buoyancy important in the boundary layer. Our comparisons are based on the 
assumption that the two regions did not interact significantly. This will be discussed 
further in $6. 

For a typical experiment the fluid was stratified and allowed to  spin-up overnight, 
with a lid on top to avoid air stress a t  the surface. The lid was 3 cm above the surface 
of the water. At t = 0 the rotation rate of the container was increased by an amount 
AQ (approximately lo%), over about 5s. Initially the fluid was in solid-body 
rotation relative to the container, which was the new frame of reference, at an 
angular velocity -AQ (for a spin-up). The Rossby number, e ,  of the flow is given by 
6 = AQ/Q. For small e forcing along the boundary at lengthscale L will penetrate a 
depth H ,  into the fluid, where H, = fL/N. For our experiments f/N was around 1/3 
in the body of the fluid, whereas the aspect ratio, depthlradius, of our containers was 
around 114. So we expected that the effects of boundary forcing would extend to the 
surface of the fluid, although showing some noticeable attentuation by then. 
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FIGURE 5. (a) Cross-section of the 'bowl' used in the laboratory experiments, and ( b )  a 
definition sketch of the slope coordinate frame. 
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FIGURE 6. Measured profiles of (a) density and ( b )  buoyancy frequency versus depth, at the 
centre of the bowl, for a typical laboratory experiment. 
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Various flow visualization techniques, described in $5 ,  allowed us to track the fluid 
as it eventually spun-up to the new rotation rate of the container. Density profiles 
were taken before and after experiments, and in general were nearly indis- 
tinguishable. 

Although we present the laboratory experiments as support for the theoretical 
ideas of $2, in fact the laboratory work was done first, and served as a guide for the 
theory, which was developed later. 

5. Experimental results 
We used three types of flow visualization to explore spin-up in the stratified bowl 

and cylinder : (i) placing dye in the boundary layer to show the direction of stress at  
the wall, (ii) following beads floating on an isopycnal to determine zonal velocities 
(zonal is defined as along a circumference), and (iii) placing dye in the body of the 
fluid to show the shear history of the flow. 

5.1. Boundary-layer visualization 
To visualize flow in the boundary layer, just before a spin-up experiment a number 
of potassium permanganate crystals were dropped onto the bottom of the tank, 
along a radius. These exude a thick purple dye showing the direction of flow just 
above the bottom, and hence the direction of stress at  the boundary. Figure 7 (a ,  b )  
shows these dye streaks during an experiment in the cylinder, and figure 7 (c, d )  
shows dye streaks for a similar experiment in the bowl. Both containers had similar 
stratifications. 

Flow in the boundary layer of the cylinder remained very much like an Ekman 
layer, moving out and downstream at 45" to the local radius. This behaviour 
continued even as the interior flow was decreased by the fast spin-up. The bowl 
exhibited very different behaviour. Flow in the outer half of the tank, where a is 
greater and the shut-down time was very short, soon became mostly zonal, 
suggesting that the Ekman boundary layer was shut-down by the buoyancy forces 
on the sloping bowl wall. For this experiment T was less than 5 s everywhere outside 
of r = 15 cm. 

5.2. Flow velocity measurements 
In order to measure zonal velocity we made long-exposure photos of particles 
('beads') moving along density surfaces, similar to the technique used by Holton 
(1965). The beads were made of candle-wax and crayon, which could be combined in 
any ratio to conform even to the rather high densities near the bottom of our 
stratifications. A heated mixture of the two was sucked into a large syringe and then 
dotted out onto a flat surface to solidify in drops about 2mm in diameter. The 
advantage of these beads is that they may be used for larger velocities than the 
thymol-blue technique (Buzyna & Veronis 1971). Also they give information on an 
entire density surface, instead of at just one point as in laser-Doppler velocimetry. 
The disadvantages are that it is difficult to make beads of perfectly consistent 
density, and the data reduction is somewhat time consuming. In a given experiment 
we had up to 60 beads floating along one density surface, with a vertical scatter in 
their positions of up to k0.5 cm. This led to some scatter in the velocity profiles in 
regions of strong vertical shear, and was the largest source of error in the data. 
Degassed water was used to avoid bubble formation on the bead surfaces. 

With a group of light-coloured beads floating along an isopycnal, the room was 



648 P. MacCready and P. B. Rhines 

(4 (4 
FIQURE 7. Photos of potassium permanganate in the boundary layer of two stratified spin-up 
experiments. The upper photos are looking down on the cylinder at  (a) t = 10 s ,  and ( b )  t = 40 s. 
The lower photos show the bowl at  (c) t = 10 s, and (d )  t = 40 s .  Crosses mark the centres, and the 
arrows point at r = 25 cm along the radius where the dye crystals lay. Both experiments were spun- 
up 15% fromf = 1 s-l. Radially outward flow persisted in the cylinder, yet i t  quickly disappeared 
in the bowl, especially a t  larger radius. Note the shape of the surface velocity profiles, indicated by 
the line of dye from very small crystals which dissolved immediately as they entered the water. 
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FIGURE 8. Normalized angular velocity versus radius, r ,  for a stratified spin-up experiment in the 
cylinder at a depth of 7 cm from the top (total depth was 11.6 cm), at eight different times (in 
seconds), as listed. The container was spun-up 15 Yn fromf = 1 .1  s-l. The solid lines are hand-drawn 
fits to the data. The fluid rapidly spun-up in the central region, which could be reached by the 
meridional circulation initially emanating from the outer corner. 

darkened and a spin-up experiment initiated. The beads were lit by a strobe light, 
and were photographed from above in the rotating frame of reference. Each exposure 
spanned 10-20 flashes of the strobe, hence each bead would appear in a photo as a 
series of dots along an arc about the centre of the tank. Each photo gives a profile 
of angular velocity as a function of radius, at  a given depth and time (the time was 
approximated as being midway through a photograph). 

Figure 8 shows the time-history of the angular velocity, o, for a 15% spin-up 
experiment in the stratified cylinder. The t = 0 line was drawn using the known AD 
of the experiment. Within three minutes most of the fluid had been spun-up to about 
55 % of the new rotation rate. This was the signature of ‘fast ’ spin-up in the cylinder, 
caused by vortex stretching driven by Ekman transport in the bottom boundary 
layer. Only over much longer times did the viscous boundary layer from the side and 
bottom walls begin to complete the spin-up to the new rotation rate. This region of 
‘fast ’ spin-up is qualitatively in agreement with previous theoretical and 
experimental work such as Walin (1969), and Buzyna & Veronis (1971). Notice the 
jet-like region near the outer boundary, which occurs in a region ‘missed’ by the 
meridional circulation. 

Although there is some vertical displacement of density surfaces during ‘fast ’ spin- 
up owing to vortex stretching, the density surfaces slump back almost to their initial 
positions over the longer viscous timescale. There is a tiny shift in isopycnals in the 
long term to fit the geopotential paraboloid of the new rotation rate, but this requires 
no vortex stretching. Ultimately, fluid particles in the interior achieve the new 
rotation rate because their potential vorticity has been altered by viscous stress. 

Figure 9 shows a similar angular velocity history for a spin-up at  two levels in the 
stratified bowl, starting from f = 0.66 s-l. In this experiment there was little, if any, 
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FIGURE 9. Normalized angular velocity versus radius for two, essentially identical, stratified spin- 
up experiments in the bowl at depths of (a) 3.4 cm from the top, and ( b )  7.45 cm from the top (total 
depth at  the centre was 11.7 cm), at eight different times (in seconds), as listed. The container was 
spun-up 10% from f = 0.66 s-’. The edge of the tank at the given depth is marked with cross- 
hatching. The fluid adjusted slowly t o  the new rotation rate, and did so mainly by diffusion inward 
from the bottom. The early profiles in ( a )  indicate that a slight zonal circulation was present a t  the 
start of the experiment. 
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evidence of a ‘fast’ spin-up such as in the stratified cylinder. Presumably much of the 
Ekman layer had been shut-down by buoyancy forces, so the meridional circulation 
which causes ‘fast ’ spin-up never developed. 

Figure 10 is for a case similar to figure 9, except that  f = 1.5 s-’. In this experiment 
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FIGURE 10. Same as figure 9 except the bowl was spun-up from f =  1.5 s-l. There was clear 
evidence of some 'fast' spin-up in the acceleration of the inner region over the first minute. As in 
the cylinder, a zonal differential jet occurred in the corner where the meridional circulation had not 
reached. 

there was some evidence of 'fast' spin-up. Recall that the shut-down time (2.28) 
increases with increasing f. In this case it appeared that the Ekman layer was 
operative long enough to affect the inner 15 ern of the flow, over the first minute. This 
issue will be taken up  more quantitatively in $6. 
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FIGURE 11. Onion-slice flow visualization in the stratified cylinder or bowl. Just before a spin-up 
experiment a sheet of dye (a )  was injected into the fluid from top to bottom along a radius. As the 
spin-up started, ( b ) ,  the dye sheet was stretched around the tank. As the spin-up proceeded, (c), the 
dye sheet was wrapped up into a spiral. A slice (d )  through the dye sheet revealed lines of constant 
angular displacement. Fluid particles on adjacent dye lines in the slice had gone around the tank 
a complete revolution relative to each other. 

5.3. Onion-slice $ow visualization 
One final method was used to  see the ‘shear history’ of an experiment. A vertical 
plane of fluorescein dye was introduced with a ‘rake’ of injection tubes. Following 
figure 11,  one can see how this dye plane is deformed by the sheared zonal velocity 
field. Slicing through this structure we find the dye lying along lines of constant 
angular displacement, with fluid particles on adjacent lines having travelled around 
the tank one revolution relative to each other. The slice was made by shining a sheet 
of light vertically down through the tank, so the dye lines appeared white on a dark 
background. We call this flow visualization technique an ‘ onion-slice ’ because of its 
appearance, especially in the stratified bowl. In  a photo of an onion-slice experiment, 
regions where there has been a radial or vertical gradient of the zonal velocity show 
up with dye lines normal to  that gradient. The more shear there has been, the more 
closely spaced these lines are. 

Figure 12 shows onion-slice photos from a spin-up experiment in the stratified 



FIGURE 12. Onion-slice photos of a stratified spin-up experiment in the cylinder a t  four times, as 
listed. The container was spun-up 15 % from f = 1 s-l, and had a stratification similar to that 
shown in figure 6. The horizontal dye sheets bulged upward in the centre owing to  the broadly 
distributed vertical shear of the zonal flow during ‘fast’ spin-up, while the sidewall boundary layer 
formed vertical sheets. 
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FIGURE 13. Same as figure 12, except in the bowl. Note that in (a )  there was only one actual dye 
line, which lay close to the edge of' bowl ; the fainter lines were reflections. The adjusting flow was 
dominated by diffusive penetration normal to the boundary. 
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FIGURE 14. Colour photos of a stratified spin-up experiment in a hemispherical container, showing the 
complete fluorescein signal, (a) early in the experiment, and (b) at a later time. In general, the dye injected 
was initially rather messy, but the shear in the zonal velocity field sharpened the gradients of the dye, leading 
eventually to well-defined lines in the light sheet. 

MACCREADY & RHINES (kcing p.  655) 
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cylinder, and figure 13 shows photos from an experiment in the stratified bowl, 
graphically demonstrating the different nature of the flow in the two containers. In  
the first two photos of the cylinder (figure 12a, b )  the widely spaced dye lines nearly 
filled the body of the fluid, expressing the penetration of the ‘fast’ spin-up 
throughout most of the tank. Later (figure 12d) the shear had continued fairly evenly 
through the depth of the fluid. The dye surfaces bowed upwards from the bottom 
centre where ‘fast’ spin-up was most intense, while a zonal differential jet near the 
outer wall represented fluid that was only slowly spun-up. The diffusive inward 
penetration near the outer wall was reflected in the vertical strike of the dye lines 
there. Fluid which had been transported radially outward in the bottom Ekman 
layer could be seen as a wedge in the corner of the cylinder. This wedge was the finite- 
Rossby-number expression of the circumferential forcing of the interior by the 
boundary layer flow. 

Experiments in the bowl, figure 13 and figure 14 (plate l),  showed remarkably 
smooth quasi-diffusion of momentum inward from the sloping bottom. Early in an 
experiment, figure 13 ( a ) ,  just a single dye sheet was visible near the boundary. The 
inner core of fluid had made about one revolution relative to the boundary. At this 
rotation rate (f = 1 s-l), intermediate between the two cases shown in figures 9 and 
10, there was little sign of significant ‘fast’ classical spin-up, which would cause an 
upward bowing of the deeper dye sheets. Regions free of dye lines represent 
unsheared fluid, rotating at nearly their original angular velocity. I n  this core there 
was a slight ‘fast ’ spin-up even in the cases with rapidly shut-down boundary layers 
(e.g. the inner core of figure 9 ( b )  experiences weak spin-up without waiting for 
diffusion from the boundary). 

Looking at spin-up in a variety of containers we found a consistent tendency for 
the dye sheets to mimic the shape of the lower boundary. Figure 12 represents 
perhaps the most extreme violation of this result, in the case of an extensive 
horizontal bottom above which the Ekman layer can continue to flow. 

6. Comparison of theory with laboratory experiments 
The theoretical ideas of shut-down and slow diffusion developed in $2  may be 

useful in understanding the experimental results if we assume that the experimental 
boundary layer developed in accordance with its local flow parameters. This 
approximation is commonly made for geophysical boundary layers when the scale of 
variation of the relevant parameters, such as N and V ,  is much greater than the 
boundary-layer thickness. Since N and V typically vary in our experiments only over 
the depth and radius of the bowl, we expect our local theory to be valid until the 
boundary layer has ‘slow diffused’ a good portion of the depth into the fluid. If 
significant fast spin-up has occurred then we would have to take account of the 
space-time structure of V in applying the theory. 

Figure 15 shows thc shut-down time 7 versus radius, for the two bowl experiments. 
In  the small-f experiment there was almost no sign of fast spin-up, particularly for 
the shallow beads. The brevity of the shut-down time implied that there would be 
essentially no radial boundary-layer transport, and hence no fast spin-up outside 
r = 10 cm. Fast spin-up inside that radius would penetrate less than one-third of the 
full depth a t  the centre, barely affecting the deeper beads. Thus the small-f swirl 
velocity data appear consistent with the interpretation that the boundary-layer 
transport was strongly limited by the shut-down mechanism. 

In  the large$ experiment there was evidence of some ‘fast ’ spin-up, although not 
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FIQIJRE 15. Shut-down time a t  the lower boundary versus radius for two bowl spin-up experiments: 
(i) refers t o  the experiment whose velocity da ta  are shown in figure 9 (small-f), and (ii) refers t o  the 
experiment whose velocity data  are shown in figure 10 (large-f). There are two profiles for each 
experiment since an experiment had to  be performed twice in order to  measure velocity at the two 
different depths. 

nearly as much as in the cylinder, nor for as long. In  the cylinder ‘fast’ spin-up 
occurred for about 3 min, whereas in the bowl with large-f it only lasted about 1 min. 
The shut-down time implied little transport outside of r = 15 cm. Owing to the 
increased rotation rate, the e-folding height of the region of fast spin-up would 
extend through about tJwo-thirds of the depth of the fluid, affecting both deep and 
shallow beads. The large-f data are thus also qualitatively consistent with the shut- 
down hypothesis. 

Assuming that the small-j experiment was, over most of its radius, unaffected by 
‘fast’ spin-up, we may compare the angular vclocity with that predicted by the slow- 
diffusion equation. Figure 16 shows angular velocity versus time a t  four locations in 
the small-f experiment. Also shown are predicted slow-diffusion solutions based on 
the value of vS/( 1 +S) at the boundary nearest to the position in question. The three 
comparisons at  larger radius are fairly close, indicating that slow diffusion was 
probably a good description of the situation. An alternative hypothesis is that the 
time rate-of-change of the zonal velocity was due to  meridional circulation driven by 
whatever boundary-laycr transport was present, and not slow diffusion. Without 
knowing the actual boundary-layer transport it is difficult to prove or disprove this 
idea, and we may say only that the data are consistent with slow diffusion. The 
innermost comparison (figure 16 d )  diverged strongly from the slow-diffusion 
prediction. This was probably due to the effects of ‘fast’ spin-up near the centre. 
Similar data for the large-f experiment (not shown here) also diverged strongly from 
the slow-diffusion prediction, again presumably due to  the effects of ‘fast ’ spin-up. 
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FIQURE 16. Normalized angular velocity versus time, at four different locations during the small- 
f (refer to figure 9) stratified spin-up experiment in the bowl, compared with velocities predicted 
by local solutions to the slow diffusion equation (2.20). The four locations are shown schematically 
at the bottom. 

7. Conclusion 
Our analysis of the boundary layer for rotating, stratified flow along a slope led to 

a circulation markedly different from that of an Ekman layer. It was neither steady, 
nor was it simply related to the interior velocity. Instead, the velocity profiles, and 
the cross-slope transport, were in general highly time-dependent . Buoyancy forces 
due to advection and diffusion of the stratification modified the force balance, 
tending to resist up- or down-slope velocities. 

Very soon after its initiation the flow began to resemble an Ekman layer, but a t  
large t /7  the flow looked like the steady solution (2.13) of Thorpe (1987), which allows 
only one interior along-slope velocity, and only one cross-slope transport. These 
properties make Thorpe’s solution difficult to apply to geophysical situations. 
Thorpe (1987) and Garrett (1990) addressed this difficulty by modifying the steady 
theory to include depth-varying profiles of viscosity and diffusivity, which could be 
interpreted as saying that a given internal geostrophic flow exerts control over the 
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magnitude of turbulent diffusion near the boundary. We have taken a different 
approach, trying to make the boundary-layer representation more realistic by 
allowing time dependence. In doing so we found that there was a whole continuum 
of solutions between those of Ekman and Thorpe. 

The ‘slow diffusion’ equation (2.20) predicted that the boundary condition on the 
along-slope velocity would diEuse into the interior, and the numerical simulations of 
$3  implied that the eventual boundary condition for this equation was the interior 
velocity of Thorpe’s solution (which vanishes as K + 0). What is of interest about slow 
diffusion is that it actually penetrates the interior much like a non-rotating viscous 
boundary layer, in contrast to  both Ekman and Thorpe’s solutions which remain 
confined close to  the boundary. 

In  $2 we also predicted the temporal evolution of the cross-slope transport. With 
the aid of numerical solutions to  determine an unknown constant, we found that the 
transport changed smoothly from the initial Ekman-layer value to  the final value of 
Thorpe’s solution over a timescale 7 (2.28), the ‘shut-down time’. 

The shut-down time gives a sensible way to  evaluate what sort of boundary-layer 
theory we should be using for a given situation. If the flow is varying much more 
rapidly than the shut-down time, say owing to the effects of ‘fast’ spin-up, then 
standard Ekman theory is a good approximation. If we are only interested in the flow 
long after the shut-down time, and only over a region where slow diffusion will have 
accomplished its work without being countermanded by other circulations or 
buoyancy sources, then Thorpe’s steady solution is appropriate. Yet anywhere 
between these two limits we must necessarily be aware of the unsteady nature of the 
boundary layer. 

The stratified spin-up experiments in a bowl with a sloping bottom boundary 
described in $4 and 5 occupy a regime where slow diffusion and the shut-down time 
were very important. Over much of the bowl with small-f the shut-down time was so 
short that almost no up-slope transport was allowed, and hence almost no ‘fast ’ spin- 
up occurred. In  these cases the main decrease in zonal velocity was apparently due 
to slow diffusion. I n  the bowl spin-up experiments the large-scale dynamics were 
completely altered by the buoyancy modification of the boundary layer. Although 
the bowl was everywhere shallower than a cylinder wherein comparison experiments 
were done, the fluid in the bowl spun-up much more slowly than that in the cylinder. 
Thus, by varying the geometry of the experiment we ended up with a boundary that 
effectively had significantly lower drag than that of the cylinder. 

If the interior circulation is naturally oscillatory (as, for example, with a Rossby 
wave), these boundary-layer dynamics imply a frequency-dependent ‘ bottom 
friction’ which is strong only at high frequencies, where the flow changes direction 
before shut-down can occur. 

We may make a simple estimate of the along-slope stress that the boundary exerts 
upon the fluid using the equations developed in $2. Taking i-integrals of the rotated 
equations of motion (2.7) with boundary conditions (2.8) and solving for the 
boundary stress in terms of the integrated cross-slope transport M (again with 
vanishingly small 11, and E,)  we find 

a t  i = o ,  

or 
a6 

- v p o ~ ~ M p 0 f c o s a  at 2 = 0  for S < l .  (7.2) 
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FIGURE 17. Along-slope stress at ẑ  = 0 from a numerical solution to (2.7) with all parameters as in 
figure 3(a ) .  The actual stress, -vp,(aV^/ai), is shown by curve ( i ) ,  while curve (ii) shows the stress 
estimated from the right-hand side of (7.1), and curve (iii) shows the stress estimated from the 
right-hand side of (7.2). 

The last expression (7.2) is exact fop both the Ekman layer and Thorpe’s solution, 
simply expressing that the boundary stress is balanced by the Coriolis force on the 
cross-slope transport. For the time-dependent boundary layer the boundary stress is 
balanced both by the Coriolis force and the acceleration of the along-slope flow. 
Equation (7.2) tells us that, for S small (which we expect for small slopes), the 
acceleration term is negligible and the stress is tied to the transport, exactly as in the 
steady theories. One may question the validity of (7.2) on the grounds that it is an 
estimate of stress in a region where E, is likely to be large, violating our assumptions. 
Yet since we are using f-integrals of the equations it turns out that the scale estimate 
of the f-integrated viscous term in (2.7a),  divided by the &integrated Coriolis term, 
is ( U/V) (E~) (&JDo) .  While the first two parts of this scale estimate may be O( 1) when 
r = 1, the third term becomes small as the along-slope boundary layer ‘slow-diffuses ’ 
into the interior. Figure 17 shows the along-slope stress at  2 = 0 versus t /r  for a 
numerical run with cr = 1 and S = 0.29 (all parameters as in figure 3a). We also plot 
the right-hand sides of (7.1) and (7.2). The figure demonstrates that, even in a case 
with strong density diffusion and S not far from 1, the boundary stress is 
approximately equal to the Coriolis force on the cross-slope transport. This balance 
is ironic when we consider that the slow-diffusion equation implies that boundary 
stress balances along-slope acceleration when cr = 1. But from the numerical 
simdlations ($3) we know that the slow-diffusion equation gives a poor representation 
of bdndary stress when cr = 1. As u+co the slow-diffusion solution was nearly 
peddcf at the boundary and indeed, in this case its &integral is exactly equal to (7.1). 
For th6 stratified spin-up experiments (7.1) shows that the torque exerted by the 
bowl up’bn the fluid dropped off rapidly as the up-slope transport was shut-down by 
buoyancy forces. 

The boundaiy-layer theory developed in $ 2  is only applicable if the assumptions 
that went intd its development are reasonably satisfied. We assumed constant 
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viscosity, diffusivity, and stratification, we ignored variations along or across the 
slope, and we ignored the overturning of statically unstable stratifications. To make 
the theory more geophysically relevant the most important direction to pursue 
would be the inclusion of variable viscosity and diffusivity, as Thorpe (1987) and 
Garrett (1990) have done for the steady theory. We hope to  pursue this avenue in 
future work. 

I n  the atmosphere, the low thermal mass of air, combined with radiative means of 
changing temperature, make a conducting boundary condition on the density 
realistic. This boundary condition allows relatively simple Ekman-like boundary- 
layer solutions (Holton 1967 and Hsueh 1969). In  contrast, the ocean floor is best 
modelled as an insulating boundary, except in the few areas of geothermal heating. 
Hence it is in the ocean that we expect our theory could be used. There are practical 
difficulties, though, with applying any theory of the oceanic bottom boundary layer. 
Data are very scarce, and determining turbulent coefficients of viscosity and 
diffusivity is inexact. It is generally accepted that in a turbulent mixed layer near the 
boundary the Prandtl number may be close to one. Yet stratified turbulence may 
easily send its energy into internal wave motion, which can transport momentum far 
from the boundary, leading to either a very high Prandtl number or the abandonment 
of Fickian diffusion entirely. 

As a lowest-level approximation, let us assume that the ocean has a constant 
vertical eddy diffusivity, K,  given by Munk’s (1966) canonical value of 1 om2 s-l. 
Thorpe’s steady transport, Kcota ,  is then simply a function of the bottom slope. 
Note that the transport becomes infinite as the slope goes to zero, and so is certainly 
unphysical over flat areas (the interior along-slope velocity also goes to infinity in 
this case). Consider two regions in the ocean: a continental slope with relatively 
strong stratification, and an abyssal region with less slope and a small stratification. 
Over the sloping region, with t a n a  = lop2 and N = 3.5 x lop3 s-l, Thorpe’s transport 
becomes very small, having up-slope velocities of only 0.1 cm s-l if distributed over 
a 10m thickness. The shut-down time indicates that the transport begins to 
approach this small value in about a week. Over an abyssal plane, with tan a = lop3 
and N = s-l, Thorpe’s transport is large enough to  be important, 1 cm s-l if 
distributed over a 10 m thickness. Yet this value is only achieved over the shut-down 
time, which is 3 x lo4 years. These are only rough estimates, which do not account 
for variable viscosity and diffusivity. They do indicate, however, that  shut-down 
may be very important on continental slopes, while standard Ekman theory is useful 
over an abyssal plane. A yardstick to judge the possible importance of shut-down is 
that the e-folding timescale of ocean currents due to ‘fast ’ spin-up is typically taken 
as one year in numerical models. Any shut-down time shorter than this is likely to 
influence the evolution of flow along the ocean’s bottom boundary. 

In  general, the shut-down time and its supporting theory presented in $2 should 
help in determining when and how buoyancy becomes important to  the boundary- 
layer force balance in a given situation. 
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